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ABSTRACT

We model a market populated by two groups of boundedly rational agents: “news-
watchers” and “momentum traders.” Each newswatcher observes some private in-
formation, but fails to extract other newswatchers’ information from prices. If
information diffuses gradually across the population, prices underreact in the short
run. The underreaction means that the momentum traders can profit by trend-
chasing. However, if they can only implement simple ~i.e., univariate! strategies,
their attempts at arbitrage must inevitably lead to overreaction at long horizons.
In addition to providing a unified account of under- and overreactions, the model
generates several other distinctive implications.

OVER THE LAST SEVERAL YEARS, a large volume of empirical work has docu-
mented a variety of ways in which asset returns can be predicted based on
publicly available information. Although different studies have used a host
of different predictive variables, many of the results can be thought of as
belonging to one of two broad categories of phenomena. On the one hand,
returns appear to exhibit continuation, or momentum, in the short to me-
dium run. On the other hand, there is also a tendency toward reversals, or
fundamental reversion, in the long run.1

It is becoming increasingly clear that traditional asset-pricing models—
such as the capital asset pricing model ~CAPM! of Sharpe ~1964! and Lint-
ner ~1965!, Ross’s ~1976! arbitrage pricing theory ~APT!, or Merton’s ~1973!
intertemporal capital asset pricing model ~ICAPM!—have a hard time ex-
plaining the growing set of stylized facts. In the context of these models, all
of the predictable patterns in asset returns, at both short and long horizons,
must ultimately be traced to differences in loadings on economically mean-
ingful risk factors. And there is little affirmative evidence at this point to
suggest that this can be done.

* Stanford Business School and MIT Sloan School of Management and NBER. This re-
search is supported by the National Science Foundation and the Finance Research Center at
MIT. We are grateful to Denis Gromb, René Stulz, an anonymous referee, and seminar par-
ticipants at MIT, Michigan, Wharton, Duke, UCLA, Berkeley, Stanford, and Illinois for help-
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As an alternative to these traditional models, many are turning to “be-
havioral” theories, where “behavioral” can be broadly construed as involving
some departure from the classical assumptions of strict rationality and un-
limited computational capacity on the part of investors. But the difficulty
with this approach is that there are a potentially huge number of such de-
partures that one might entertain, so it is hard to know where to start.

In order to impose some discipline on the process, it is useful to articulate
the criteria that a new theory should be expected to satisfy. There seems to
be broad agreement that to be successful, any candidate theory should, at a
minimum: ~1! rest on assumptions about investor behavior that are either a
priori plausible or consistent with casual observation; ~2! explain the exist-
ing evidence in a parsimonious and unified way; and ~3! make a number of
further predictions that can be subject to “out-of sample” testing and that
are ultimately validated. Fama ~1998! puts particular emphasis on the lat-
ter two criteria: “Following the standard scientific rule, market efficiency
can only be replaced by a better model. . . . The alternative has a daunting
task. It must specify what it is about investor psychology that causes simul-
taneous underreaction to some types of events and overreaction to oth-
ers. . . . And the alternative must present well-defined hypotheses, themselves
potentially rejectable by empirical tests.”

A couple of recent papers take up this challenge. Both Barberis, Shleifer,
and Vishny ~1998! and Daniel, Hirshleifer, and Subrahmanyam ~1998! as-
sume that prices are driven by a single representative agent, and then posit
a small number of cognitive biases that this representative agent might have.
They then investigate the extent to which these biases are sufficient to si-
multaneously deliver both short-horizon continuation and long-horizon
reversals.2

In this paper, we pursue the same goal as Barberis et al. ~1998! and Dan-
iel et al. ~1998!, that of building a unified behavioral model. However, we
adopt a fundamentally different approach. Rather than trying to say much
about the psychology of the representative agent, our emphasis is on the
interaction between heterogeneous agents. To put it loosely, less of the action
in our model comes from particular cognitive biases that we ascribe to in-
dividual traders, and more of it comes from the way these traders interact
with one another.

More specifically, our model features two types of agents, whom we term
“newswatchers” and “momentum traders.” Neither type is fully rational in
the usual sense. Rather, each is boundedly rational, with the bounded ra-
tionality being of a simple form: each type of agent is only able to “process”
some subset of the available public information.3 The newswatchers make
forecasts based on signals that they privately observe about future funda-
mentals; their limitation is that they do not condition on current or past

2 We have more to say about these and other related papers in Section V below.
3 Although the model is simpler with just these two types of traders, the results are robust

to the inclusion of a set of risk-averse, fully rational arbitrageurs, as shown in Section III.B.
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prices. Momentum traders, in contrast, do condition on past price changes.
However, their limitation is that their forecasts must be “simple” ~i.e., uni-
variate! functions of the history of past prices.4

In addition to imposing these two constraints on the information process-
ing abilities of our traders, we make one further assumption, which is more
orthodox in nature: Private information diffuses gradually across the news-
watcher population. All our conclusions then f low from these three key as-
sumptions. We begin by showing that when only newswatchers are active,
prices adjust slowly to new information—there is underreaction but never
overreaction. As is made clear later, this result follows naturally from com-
bining gradual information diffusion with the assumption that newswatch-
ers do not extract information from prices.

Next, we add the momentum traders. It is tempting to conjecture that
because the momentum traders can condition on past prices, they arbitrage
away any underreaction left behind by the newswatchers; with sufficient
risk tolerance, one might expect that they would force the market to become
approximately efficient. However, it turns out that this intuition is incom-
plete if momentum traders are limited to simple strategies. For example,
suppose that a momentum trader at time t must base his trade only on the
price change over some prior interval, say from t 2 2 to t 2 1. We show that
in this case, momentum traders’ attempts to profit from the underreaction
caused by newswatchers lead to a perverse outcome: The initial reaction of
prices in the direction of fundamentals is indeed accelerated, but this comes
at the expense of creating an eventual overreaction to any news. This is true
even when momentum traders are risk neutral.

Again, the key to this result is the assumption that momentum traders
use simple strategies—that is, they do not condition on all public informa-
tion. Continuing with the example, if a momentum trader’s order at time t is
restricted to being a function of just the price change from t 2 2 to t 2 1, it
is clear that it must be an increasing function. On average, this simple trend-
chasing strategy makes money. But if one could condition on more informa-
tion, it would become apparent that the strategy does better in some
circumstances than in others. In particular, the strategy earns the bulk of
its profits early in the “momentum cycle”—by which we mean shortly after
substantial news has arrived to the newswatchers—and loses money late in
the cycle, by which time prices have already overshot long-run equilibrium
values.

To see this point, suppose that there is a single dose of good news at time
t and no change in fundamentals after that. The newswatchers cause prices
to jump at time t, but not far enough, so that they are still below their

4 The constraints that we put on traders’ information-processing abilities are arguably not as
well-motivated by the experimental psychology literature as the biases in Barberis et al. ~1998!
or Daniel et al. ~1998!, and so may appear to be more ad hoc. However, they generate new and
clear-cut asset-pricing predictions, some of which have already been supported in recent tests.
See Section IV below.
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long-run values. At time t 1 1 there is a round of momentum purchases, and
those momentum buyers who get in at this time make money. But this round
of momentum trading creates a further price increase, which sets off more
momentum buying, and so on. Later momentum buyers ~i.e., those buying at
t 1 i for some i ! lose money, because they get in at a price above the long-run
equilibrium.

Thus a crucial insight is that “early” momentum buyers impose a negative
externality on “late” momentum buyers.5 Ideally, one uses a momentum strat-
egy because a price increase signals that there is good news about funda-
mentals out there that is not yet fully incorporated into prices. But sometimes,
a price increase is the result not of news but just of previous rounds of
momentum trade. Because momentum traders cannot directly condition on
whether or not news has recently arrived, they do not know whether they
are early or late in the cycle. Hence they must live with this externality, and
accept the fact that sometimes they buy when earlier rounds of momentum
trading have pushed prices past long-run equilibrium values.

Although we make two distinct bounded-rationality assumptions, our model
can be said to “unify” underreaction and overreaction in the following sense.
We begin by modeling a tendency for one group of traders to underreact to
private information. We then show that when a second group of traders tries
to exploit this underreaction with a simple arbitrage strategy, they only par-
tially eliminate it, and in so doing, create an excessive momentum in prices
that inevitably culminates in overreaction. Thus, the very existence of un-
derreaction sows the seeds for overreaction, by making it profitable for mo-
mentum traders to enter the market. Or, said differently, the unity lies in
the fact that our model gets both underreaction and overreaction out of just
one primitive type of shock: Gradually diffusing news about fundamentals.
There are no other exogenous shocks to investor sentiment and no liquidity-
motivated trades.

In what follows, we develop a simple infinite-horizon model that captures
these ideas. We begin in Section I by giving an overview of the empirical
evidence that motivates our work. In Section II, we present and solve the
basic model, and do a number of comparative statics experiments. Sec-
tion III contains several extensions. In Section IV, we draw out the model’s
empirical implications. Section V discusses related work, and Section VI
concludes.

I. Evidence of Continuation and Reversals

A. Continuation

The continuation evidence can be decomposed along the following lines.
First, returns tend to exhibit unconditional positive serial correlation at ho-
rizons on the order of three to twelve months. This is true both in cross

5 As we discuss below, this “momentum externality” is reminiscent of the herding models of
Banerjee ~1992!, Bikhchandani, Hirshleifer, and Welch ~1992!, and Scharfstein and Stein ~1990!.
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sections of individual stocks ~Jegadeesh and Titman ~1993!! and for a variety
of broad asset classes ~Cutler, Poterba, and Summers ~1991!!.6 One possible
interpretation of this unconditional evidence—which fits with the spirit of
the model below—is that information which is initially private is incorpo-
rated into prices only gradually.

Second, conditional on observable public events, stocks tend to experience
post-event drift in the same direction as the initial event impact. The types
of events that have been examined in detail and that fit this pattern include:
Earnings announcements ~perhaps the most-studied type of event in this
genre; see e.g., Bernard ~1992! for an overview!; stock issues and repur-
chases; dividend initiations and omissions; and analyst recommendations.7
Recent work by Chan, Jegadeesh, and Lakonishok ~1996! shows that these
two types of continuation are distinct: In a multiple regression, both past
returns and public earnings surprises help to predict subsequent returns at
horizons of six months and one year.

B. Reversals and Fundamental Reversion

One of the first and most inf luential papers in the reversals category is
DeBondt and Thaler ~1985!, who find that stock returns are negatively cor-
related at long horizons. Specifically, stocks that have had the lowest returns
over any given five-year period tend to have high returns over the subsequent
five years, and vice versa.8 A common interpretation of this result is that when
there is a sustained streak of good news about an asset, its price overshoots its
“fundamental value” and ultimately must experience a correction. More re-
cent work in the same spirit has continued to focus on long-horizon predict-
ability, but has used what are arguably more refined indicators of fundamental
value, such as book-to-market, and cash f low-to-price ratios. ~See, e.g., Fama
and French ~1992! and Lakonishok, Shleifer, and Vishny ~1994!.!9

C. Is It Risk?

In principle, the patterns noted above could be consistent with traditional
models, to the extent that they ref lect variations in risk, either over time or
across assets. Fama and French ~1993, 1996! argue that many of the long-

6 Rouwenhorst ~1998, 1999! finds that Jegadeesh and Titman’s ~1993! U.S. results carry over
to many other developed and emerging markets, though they are not statistically significant for
every country individually ~see, e.g., Haugen and Baker ~1996! on weak momentum in Japan!.

7 References include: Bernard and Thomas ~1989, 1990! on earnings announcements; Lough-
ran and Ritter ~1995! and Spiess and Aff leck-Graves ~1995! on stock issues; Ikenberry, Lakon-
ishok, and Vermaelen ~1995! on repurchases; Michaely, Thaler, and Womack ~1995! on dividend
initiations and omissions; and Womack ~1996! on analyst recommendations.

8 These results have been controversial, but seem to have stood up to scrutiny ~Chopra,
Lakonishok, and Ritter ~1992!!. There are also direct analogs in the time series of aggregate
market returns, although the statistical power is lower. See Fama and French ~1988!, Poterba
and Summers ~1988!, and Cutler, Poterba, and Summers ~1991!.

9 These results have also been found to be robust in international data. ~Fama and French
~1998!, Rouwenhorst ~1999!! And again, there are analogous fundamental reversion patterns in
the time-series literature on aggregate market predictability ~Campbell and Shiller ~1988!!.
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horizon results—such as return reversals, the book-to-market effect, and the
cashf low-to-price effect—can be largely subsumed within a three-factor model
that they interpret as a variant of the APT or ICAPM. However, this position
has been controversial, since there is little affirmative evidence that the
Fama–French factors correspond to economically meaningful risks. Indeed,
several recent papers demonstrate that the contrarian strategies that ex-
ploit long-horizon overreaction are not significantly riskier than average.10

There seems to be more of a consensus that the short-horizon underreaction
evidence cannot be explained in terms of risk. Bernard and Thomas ~1989! re-
ject risk as an explanation for post-earnings-announcement drift, and Fama
and French ~1996! remark that the continuation results of Jegadeesh and Tit-
man ~1993! constitute the “main embarrassment” for their three-factor model.

II. The Model

A. Price Formation with Newswatchers Only

As mentioned above, our model features two classes of traders, newswatch-
ers and momentum traders. We begin by describing how the model works
when only the newswatchers are present. At every time t, the newswatchers
trade claims on a risky asset. This asset pays a single liquidating dividend
at some later time T. The ultimate value of this liquidating dividend can be
written as: DT 5 D0 1 (j50

T ej , where all the e’s are independently distrib-
uted, mean-zero normal random variables with variance s2. Throughout, we
consider the limiting case where T goes to infinity. This simplifies matters
by allowing us to focus on steady-state trading strategies—that is, strat-
egies that do not depend on how close we are to the terminal date.11

In order to capture the idea that information moves gradually across the news-
watcher population, we divide this population into z equal-sized groups. We
also assume that every dividend innovation ej can be decomposed into z in-
dependent subinnovations, each with the same variance s20z: ej 5 ej

11{{{1ej
z.

The timing of information release is then as follows. At time t, news about et1z21
begins to spread. Specifically, at time t, newswatcher group 1 observes et1z21

1 ,
group 2 observes et1z21

2 , and so forth, through group z, which observes et1z21
z .

Thus at time t each subinnovation of et1z21 has been seen by a fraction 10z of
the total population.

Next, at time t 1 1, the groups “rotate,” so that group 1 now observes
et1z21

2 , group 2 observes et1z21
3 , and so forth, through group z, which now

observes et1z21
1 . Thus at time t 1 1 the information has spread further, and

10 See Lakonishok et al. ~1994! and MacKinlay ~1995!. Daniel and Titman ~1997! directly
dispute the idea that the book-to-market effect can be given a risk interpretation.

11 A somewhat more natural way to generate an infinite-horizon formulation might be to
allow the asset to pay dividends every period. The only reason we push all the dividends out
into the infinite future is for notational simplicity. In particular, when we consider the strat-
egies of short-lived momentum traders below, our approach allows us to have these strategies
depend only on momentum traders’ forecasts of price changes, and we can ignore their forecasts
of interim dividend payments.
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each subinnovation of et1z21 has been seen by a fraction 20z of the total
population. This rotation process continues until time t 1 z 21, at which
point every one of the z groups has directly observed each of the subinno-
vations that comprise et1z21. So et1z21 has become totally public by time
t 1 z 2 1. Although this formulation may seem unnecessarily awkward, the
rotation feature is useful because it implies that even as information moves
slowly across the population, on average everybody is equally well-informed.12

This symmetry makes it transparently simple to solve for prices, as is seen
momentarily.

In this context, the parameter z can be thought of as a proxy for the ~lin-
ear! rate of information f low—higher values of z imply slower information
diffusion. Of course, the notion that information spreads slowly is more ap-
propriate for some purposes than others. In particular, this construct is fine
if our goal is to capture the sort of underreaction that shows up empirically
as unconditional positive correlation in returns at short horizons. However,
if we are also interested in capturing phenomena like post-earnings-
announcement drift—where there is apparently underreaction even to data
that is made available to everyone simultaneously—we need to embellish
the model. We discuss this embellishment later; for now it is easiest to think
of the model as only speaking to the unconditional evidence on underreaction.

All the newswatchers have constant absolute risk aversion ~CARA! utility
with the same risk-aversion parameter, and all live until the terminal date
T. The riskless interest rate is normalized to zero, and the supply of the
asset is fixed at Q. So far, all these assumptions are completely orthodox. We
now make two that are less conventional. First, at every time t, newswatch-
ers formulate their asset demands based on the static-optimization notion
that they buy and hold until the liquidating dividend at time T.13 Second,
and more critically, while newswatchers can condition on the information
sets described above, they do not condition on current or past prices. In
other words, our equilibrium concept is a Walrasian equilibrium with pri-
vate valuations, as opposed to a fully revealing rational expectations
equilibrium.

As suggested in the Introduction, these two unconventional assumptions
can be motivated based on a simple form of bounded rationality. One can
think of the newswatchers as having their hands full just figuring out the
implications of the e’s for the terminal dividend DT . This leaves them unable
to also use current and past market prices to form more sophisticated fore-
casts of DT ~our second assumption!; it also leaves them unable to make any
forecasts of future price changes, and hence unable to implement dynamic
strategies ~our first assumption!.

12 Contrast this with a simpler setting where group 1 always sees all of et1z21 first, then
group 2 sees it second, etc. In this case, group 1 newswatchers are better-informed than their
peers.

13 There is an element of time-inconsistency here, since in fact newswatchers may adjust
their positions over time. Ignoring the dynamic nature of newswatcher strategies is more sig-
nificant when we add momentum traders to the model, so we discuss this issue further in
Section II.B.
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Given these assumptions, and the symmetry of our setup, the conditional
variance of fundamentals is the same for all newswatchers, and the price at
time t is given by

Pt 5 Dt 1 $~z 2 1!et11 1 ~z 2 2!et121{{{1et1z21%0z 2 uQ, ~1!

where u is a function of newswatchers’ risk aversion and the variance of the
e’s. For simplicity, we normalize the risk aversion so that u 5 1 hereafter. In
words, equation ~1! says that the new information works its way linearly
into the price over z periods. This implies that there is positive serial cor-
relation of returns over short horizons ~of length less than z!. Note also that
prices never overshoot their long-run values, or, equivalently, that there is
never any negative serial correlation in returns at any horizon.

Even given the eminently plausible assumption that private information
diffuses gradually across the population of newswatchers, the gradual-price-
adjustment result in equation ~1! hinges critically on the further assump-
tion that newswatchers do not condition on prices. For if they did—and as
long as Q is nonstochastic—the logic of Grossman ~1976! would imply a
fully revealing equilibrium, with a price Pt

* , following a random walk given
by ~for u 5 1!:14

Pt
* 5 Dt1z21 2 Q. ~2!

We should therefore stress that we view the underreaction result embod-
ied in equation ~1! to be nothing more than a point of departure. As such, it
raises an obvious next question: Even if newswatchers are too busy process-
ing fundamental data to incorporate prices into their forecasts, cannot some
other group of traders focus exclusively on price-based forecasting, and in so
doing generate an outcome close to the rational expectations equilibrium of
equation ~2!? It is to this central question that we turn next, by adding the
momentum traders into the mix.

B. Adding Momentum Traders to the Model

Momentum traders also have CARA utility. Unlike the newswatchers, how-
ever, they have finite horizons. In particular, at every time t, a new gener-
ation of momentum traders enters the market. Every trader in this generation
takes a position, and then holds this position for j periods—that is, until
time t 1 j. For modeling purposes, we treat the momentum traders’ horizon
j as an exogenous parameter.

The momentum traders transact with the newswatchers by means of mar-
ket orders. They submit quantity orders, not knowing the price at which
these orders will be executed. The price is then determined by the competi-
tion among the newswatchers, who double as market makers in this setup.
Thus, in deciding the size of their orders, the momentum traders at time t
must try to predict ~Pt1j 2 Pt!. To do so, they make forecasts based on past

14 Strictly speaking, this result also requires that there be an initial “date 0” at which ev-
erybody is symmetrically informed.
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price changes. We assume that these forecasts take an especially simple
form: The only conditioning variable is the cumulative price change over the
past k periods; that is, ~Pt21 2 Pt2k21!.

As it turns out, the exact value of k is not that important, so in what
follows we simplify things by setting k 5 1, and using ~Pt21 2 Pt22! [ DPt21
as the time-t forecasting variable.15 What is more significant is that we
restrict the momentum traders to making univariate forecasts based on past
price changes. If, in contrast, we allow them to make forecasts using n lags
of price changes, giving different weights to each of the n lags, we suspect
that for sufficiently large n, many of the results we present below would go
away. Again, the motivation is a crude notion of bounded rationality: Mo-
mentum traders simply do not have the computational horsepower to run
complicated multivariate regressions.

With k 5 1, the order f low from generation-t momentum traders, Ft , is of
the form

Ft 5 A 1 fDPt21, ~3!

where the constant A and the elasticity parameter f have to be determined
from optimization on the part of the momentum traders. This order f low
must be absorbed by the newswatchers. We assume that the newswatchers
treat the order f low as an uninformative supply shock. This is consistent
with our prior assumption that the newswatchers do not condition on prices.
Given that the order f low is a linear function of past price changes, if we
allowed the newswatchers to extract information from it, we would be indi-
rectly allowing them to learn from prices.

To streamline things, the order f low from the newswatchers is the only
source of supply variation in the model. Given that there are j generations of
momentum traders in the market at any point in time, the aggregate supply
St absorbed by the newswatchers is given by:

St 5 Q 2 (
i51

j

Ft112i 5 Q 2 jA 2 (
i51

j

fDPt2i . ~4!

We continue to assume that, at any time t, the newswatchers act as if they
buy and hold until the liquidating dividend at time T. This implies that
prices are given exactly as in equation ~1!, except that the fixed supply Q is
replaced by the variable St , yielding

Pt 5 Dt 1 $~z 2 1!et11 1 ~z 2 2!et121{{{1et1z21%0z 2 Q 1 jA 1 (
i51

j

fDPt2i .

~5!

15 In the NBER working paper version, we provide a detailed analysis of the comparative
statics properties of the model with respect to k.
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In most of the analysis, the constants Q and A play no role, so we disregard
them when it is convenient to do so.

As noted previously, newswatchers’ behavior is time-inconsistent. Al-
though at time t they base their demands on the premise that they do not
retrade, they violate this to the extent that they are active in later periods.
We adopt this time-inconsistent shortcut because it dramatically simplifies
the analysis. Otherwise, we face a complex dynamic programming problem,
with newswatcher demands at time t depending not only on their forecasts
of the liquidating dividend DT but also on their predictions for the entire
future path of prices.

Two points can be offered in defense of this time-inconsistent simplifica-
tion. First, it fits with the basic spirit of our approach, which is to have the
newswatchers behave in a simple, boundedly rational fashion. Second, we
have no reason to believe that it colors any of our important qualitative
conclusions. Loosely speaking, we are closing down a “frontrunning” effect,
whereby newswatchers buy more aggressively at time t in response to good
news, since they know that the news will kick off a series of momentum
trades and thereby drive prices up further over the next several periods.16

Such frontrunning by newswatchers may speed the response of prices to
information, thereby mitigating underreaction, but in our setup it can never
wholly eliminate either underreaction or overreaction.17

C. The Nature of Equilibrium

With all of the assumptions in place, we are now ready to solve the model.
The only task is to calculate the equilibrium value of f. Disregarding con-
stants, optimization on the part of the momentum traders implies

fDPt21 5 gEM ~Pt1j 2 Pt!0varM ~Pt1j 2 Pt!, ~6!

where g is the aggregate risk tolerance of the momentum traders, and EM
and varM denote the mean and variance given their information, which is
just DPt21. We can rewrite equation ~6! as

f 5 g cov~Pt1j 2 Pt ,DPt21!0$var~DP !varM ~Pt1j 2 Pt!%. ~7!

The definition of equilibrium is a fixed point such that f is given by equa-
tion ~7!, while at the same time price dynamics satisfy equation ~5!. We
restrict ourselves to studying covariance-stationary equilibria. In Appendix
A we prove that a necessary condition for a conjectured equilibrium process
to be covariance stationary is that 6f6 , 1. Such an equilibrium may not
exist for arbitrary parameter values, and we are also unable to generically
rule out the possibility of multiple equilibria. However, we prove in the ap-
pendix that existence is guaranteed so long as the risk tolerance g of the

16 This sort of frontrunning effect is at the center of DeLong et al. ~1990!.
17 See the NBER working paper version for a fuller treatment of this frontrunning issue.
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momentum traders is sufficiently small, since this in turn ensures that 6f6
is sufficiently small. Moreover, detailed experimentation suggests that a unique
covariance-stationary equilibrium does in fact exist for a large range of the
parameter space.18

In general, it is difficult to solve the model in closed form, and we have to
resort to a computational algorithm to find the fixed point. For an arbitrary
set of parameter values, we always begin our numerical search for the fixed
point at j 5 1. Given this restriction, we can show that the condition 6f6 , 1
is both necessary and sufficient for covariance-stationarity. We also start
with a small value of risk tolerance and an initial guess for f of zero. The
solutions in this region of the parameter space are well behaved. Using these
solutions, we then move to other regions of the parameter space. This pro-
cedure ensures that if there are multiple covariance-stationary equilibria,
we would always pick the one with the smallest value of f. We also have a
number of sensible checks for when we have moved outside the covariance-
stationary region of the parameter space. These are described in Appen-
dix A.

Even without doing any computations, we can make several observations
about the nature of equilibrium. First, we have the following lemma.

LEMMA 1: In any covariance-stationary equilibrium, f . 0. That is, momen-
tum traders must rationally behave as trend-chasers.

The lemma is proved in Appendix A, but it is trivially easy to see why
f 5 0 cannot be an equilibrium. Suppose to the contrary it is. Then prices
are given as in the all-newswatcher case in equation ~1!. And in this case,
cov~Pt1j 2 Pt,DPt21! . 0, so that equation ~7! tells us that f . 0, estab-
lishing a contradiction.

We are now in a position to make some qualitative statements about the
dynamics of prices. First, let us consider the impulse response of prices to
news shocks. The thought experiment here is as follows. At time t, there is
a one-unit positive innovation et1z21 that begins to diffuse among news-
watchers. There are no further news shocks from that point on. What does
the price path look like?

The answer can be seen by decomposing the price at any time into two
components: that attributable to newswatchers, and that attributable to mo-
mentum traders. Newswatchers’ aggregate estimate of DT rises from time t
to time t 1 z 2 1, by which time they have completely incorporated the news
shock into their forecasts. Thus, by time t 1 z 2 1 the price is just right in
the absence of any order f low from momentum traders. But with f . 0, any
positive news shock must generate an initially positive impulse to momentum-

18 Our experiments suggest that we only run into existence problems when both the risk
tolerance and the information-diffusion parameter z simultaneously become very large—even
an infinite value of g poses no problem so long as z is not too big. The intuition will become
clearer when we do the comparative statics, but loosely speaking, the problem is that as z gets
large, momentum trading becomes more profitable. Combined with high risk tolerance, this can
make momentum traders behave so aggressively that our 6f6 , 1 condition is violated.
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trader order f low. Moreover, the cumulative order f low must be increasing
until at least time t 1 j, since none of the momentum trades stimulated by
the shock begin to be unwound until t 1 j 1 1. This sort of reasoning leads
to the conclusions stated in the following proposition.

PROPOSITION 1: In any covariance-stationary equilibrium, given a positive one-
unit shock et1z21 that first begins to diffuse among newswatchers at time t:

(i) There is always overreaction, in the sense that the cumulative impulse
response of prices peaks at a value that is strictly greater than one.

(ii) If the momentum traders’ horizon j satisfies j $ z 2 1, the cumulative
impulse response peaks at t 1 j and then begins to decline, eventually
converging to one.

(iii) If j , z 2 1, the cumulative impulse response peaks no earlier than
t 1 j, and eventually converges to one.

In addition to the impulse response function, it is also interesting to con-
sider the autocovariances of prices at various horizons. We can develop some
rough intuition about these autocovariances by considering the limiting case
where the risk tolerance of the momentum traders g goes to infinity. In this
case, equation ~7! implies that the equilibrium must have the property that
cov~Pt1j 2 Pt,DPt21! 5 0. Expanding this expression, we can write

cov~DPt11,DPt21! 1 cov~DPt12,DPt21!1{{{1cov~DPt1j ,DPt21! 5 0. ~8!

Equation ~8! allows us to state the following proposition.

PROPOSITION 2: In any covariance-stationary equilibrium, if price changes are
positively correlated at short horizons (e.g., if cov~DPt11,DPt21! . 0!, then with
risk-neutral momentum traders they are negatively correlated at a horizon no
longer than j 11—in other words, it must be that cov~DPt1i ,DPt21! , 0 for some
i # j.

It is useful to explore the differences between Propositions 1 and 2 in some
detail, since at first glance it might appear that they are somewhat contra-
dictory. On the one hand, Proposition 1 says that in response to good news
there is continued upward momentum in prices for at least j periods, and
possibly more ~if j , z 2 1!. On the other hand, Proposition 2 suggests that
price changes begin to be reversed within j 1 1 periods, and quite possibly
sooner than that.

The two propositions can be reconciled by noting that the former is a con-
ditional statement—that is, it talks about the path of prices from time t
onward, conditional on there having been a news shock at time t. Thus Prop-
osition 1 implies that if a trader somehow knows for sure that there is a
news shock at time t, he could make a strictly positive expected profit by
buying at this time and holding until time t 1 j. One might term such a
strategy “buying early in the momentum cycle”—that is, buying immedi-
ately on the heels of news arrival. But of course, such a strategy is not
available to the momentum traders in our model because they cannot con-
dition directly on the e’s.
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In contrast, Proposition 2 is an unconditional statement about the auto-
covariance of prices. It f lows from the requirement that if a trader buys at
time t in response to an unconditional price increase at time t 2 1, and then
holds until t 1 j, he makes zero profits on average. This zero-profit require-
ment in turn must hold when momentum traders are risk-neutral, because
the unconditional strategy is available to them.

There is a simple reason why an unconditional strategy of buying follow-
ing any price increase does not work as well as the conditional strategy of
buying only following directly observed good news: Not all price increases
are news-driven. In particular, a trader who buys based on a price increase
observed at time t runs the following risk. It may be “late” in the momentum
cycle, in the sense that there has not been any good news for the last several
periods. Say the last good news hit at t 2 i. If this is the case, the price
increase at time t is just due to a late round of momentum buying. And those
earlier momentum purchases kicked off by the news at t 2 i will begin to
unwind in the very near future ~specifically, at t 2 i 1 j 1 1!, causing the
trader to experience losses well before the end of his trading horizon.

This discussion highlights the key spillover effect that drives our results.
A momentum trader who is fortunate enough to buy shortly after the arrival
of good news imposes a negative externality on those that follow him. He
does so by creating a further price increase that the next generation par-
tially misinterprets as more good news. This causes the next generation to
buy, and so on. At some point, the buying has gone too far, and the price
overshoots the level warranted by the original news. Given the inability of
momentum traders to condition directly on the e’s, everybody in the chain is
behaving as rationally as possible, but the externality creates an apparently
irrational outcome in the market as a whole.

D. Winners and Losers

A natural question is whether the bounded rationality of either the news-
watchers or the momentum traders causes them to systematically lose money.
In general, both groups can earn positive expected returns as long as the net
supply Q of the asset is positive. Consider first the case where Q 5 0. In this
case, it can be shown that the momentum traders earn positive returns, as
long as their risk tolerance is finite. Because with Q 5 0, this is a zero-sum
game, it must therefore be that the newswatchers lose money. The one ex-
ception is when momentum traders are risk-neutral, and both groups break
even.19

When Q . 0, the game becomes positive-sum, as there is a return to risk-
sharing that can be divided between the two groups. Thus, even though the
newswatchers may effectively lose some money on a trading basis to the
momentum traders, this can be more than offset by their returns from risk-

19 This result is related to the fact that newswatchers have time-inconsistent strategies, so
that in formulating their demands they ignore the fact that they will be transacting with mo-
mentum traders who will be trying to take advantage of them. Thus, in some sense, the news-
watchers are more irrational than the momentum traders in this model.
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sharing, and they can make a net profit. Again, in the limit where the mo-
mentum traders become risk-neutral, both groups break even. The logic is
similar to that with Q 5 0, because risk-neutrality on the part of momentum
traders dissipates all the risk-sharing profits, restoring the zero-sum nature
of the game.

E. Numerical Comparative Statics

In order to develop a better feeling for the properties of the model, we
perform a variety of numerical comparative statics exercises.20 For each set
of parameter values, we calculate the following five numbers: ~i! the equi-
librium value of f; ~ii! the unconditional standard deviation of monthly re-
turns DP; ~iii! the standard deviation of the pricing error relative to a rational
expectations benchmark, ~Pt 2 Pt

* !; ~iv! the cumulative impulse response of
prices to a one-unit e shock; and ~v! the autocorrelations of returns. The
detailed calculations are shown in Appendix B; here we use plots of the
impulse responses to convey the broad intuition.

We begin in Figure 1 by investigating the effects of changing the momen-
tum traders’ horizon j. We hold the information-diffusion parameter z fixed
at 12 months, and set the standard deviation of the fundamental e shocks
equal to 0.5 per month. Finally, we assume that the aggregate risk tolerance
of the momentum traders, g, equals 103.21 We then experiment with values
of j ranging from 6 to 18 months. As a baseline, focus first on the case where
j 5 12 months. Consistent with Proposition 1, the impulse response function
peaks 12 months after an e shock, reaching a value of 1.342. In other words,
at the peak, prices overshoot the change in long-run fundamentals by 34.2 per-
cent. After the peak, prices eventually converge back to 1.00, although not in
a monotonic fashion—rather, there are a series of damped oscillations as the
momentum-trading effects gradually wring themselves out.

Now ask what happens as j is varied. As can be seen from Figure 1, the
effects on the impulse response function are nonmonotonic. For example,
with j 5 6, the impulse response peaks at 1.265, and with j 5 18, the peak
reaches 1.252, neither as high as in the case where j 5 12. This nonmono-
tonicity arises because of two competing effects. On the one hand, an in-
crease in j means that there are more generations of momentum traders
active in the market at any one time; hence their cumulative effect should be
stronger, all else equal. On the other hand, the momentum traders ratio-
nally recognize the dangers of having a longer horizon—there is a greater
risk that they get caught trading late in the momentum cycle. As a result,
they trade less aggressively, so that f is decreasing in j.

20 Appendix A brief ly discusses our computational methods.
21 Campbell, Grossman, and Wang ~1993! suggest that this value of risk tolerance is about

right for the market as a whole. Of course, for individual stocks, arbitrageurs may be more
risk-tolerant, since they may not have to bear systematic risk. As we demonstrate below, our
results on overreaction tend to become more pronounced when risk tolerance is increased.
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A more clear-cut result appears to emerge when we consider the effect of j on
the time pattern of autocorrelations. As suggested by Figure 1, and confirmed
by the calculations in Appendix B, the smaller is j, the faster the autocorre-
lations begin to turn negative. For example, with j 5 6, the first negative auto-
correlation occurs at a lag of six months, but with j 5 18, the first negative
autocorrelation occurs at a lag of 12 months. Thus the intuition from Propo-
sition 2 seems to carry over to the case of nonzero risk aversion.

In Figure 2, we examine the effect of changing momentum traders’ risk
tolerance. ~This experiment can equivalently be thought of as varying the
relative proportions of momentum traders and newswatchers.! We set j 5
z 5 12 months, and allow g to vary. As risk tolerance increases, momentum
traders respond more aggressively to past price changes—that is, f in-
creases. This causes the impulse response function to reach higher peak
values. Also, the unconditional volatility of monthly returns rises monoton-
ically.22 It turns out, however, that the effect of risk tolerance on the pricing

22 Although volatility rises with momentum trading, it is not necessarily ~though it may be!
“excessive” relative to a rational expectations benchmark. This is because we are starting from
a point where there is underreaction, which leads to lower volatility than under a random walk.

Figure 1. Cumulative impulse response and momentum traders’ horizon. The momen-
tum traders’ horizon j takes on values of 6, 12, and 18. Base is the cumulative impulse response
without momentum trading. The other parameter values are set as follows: the information
diffusion parameter z is 12, the volatility of news shocks is 0.5, and the risk tolerance gamma
is 103.
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error ~Pt 2 Pt
* ! is U-shaped: The pricing error first falls, and then rises as

risk tolerance is increased. On the one hand, more momentum trading ac-
celerates the reaction of prices to information, which reduces underreaction
and thereby decreases pricing errors. On the other hand, more momentum
trading also exacerbates overreaction, which increases pricing errors. Evi-
dently, the two effects interact so as to produce a nonmonotonic pattern.23

Finally, in Figure 3, we allow the information-diffusion parameter z to vary.
Increasing z has a monotonic effect on the intensity f of momentum trade: The
slower the newswatchers are to figure things out, the greater are the profit
opportunities for momentum traders. In the range of the parameter space where
j $ z 2 1, the induced increase in f in turn has a monotonic effect on the peak
impulse response—more aggressive momentum trade leads to more pro-
nounced overshooting and, correspondingly, to negative autocorrelations that
are generally larger in absolute value during the reversal phase.24

23 The fact that momentum trading can increase both volatility and pricing errors serves as
another counterexample to Friedman’s ~1953! famous claim that profitable speculation must
stabilize prices. See also Hart and Kreps ~1986!, Stein ~1987!, and DeLong et al. ~1990!.

24 When j , z 2 1, there is no longer a monotonic link between f and the degree of over-
shooting. This is because the biggest momentum trades are already being unwound before
newswatchers have fully incorporated a news shock into their forecasts.

Figure 2. Cumulative impulse response and momentum traders’ risk tolerance. The
momentum traders’ risk tolerance gamma takes on values of 1011, 107, and 103. Base is the
cumulative impulse response without momentum trading. The other parameter values are set
as follows: The information diffusion parameter z is 12, the momentum traders’ horizon j is 12,
and the volatility of news shocks is 0.5.
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III. Extensions of the Basic Model: More Rational Arbitrage

We now consider a few extensions of the basic model. The overall spirit
here is to ask: What happens as we allow for progressively more rational
behavior by arbitrageurs?

A. Contrarian Strategies

A.1. Contrarians and Momentum Traders Are Two Separate Groups

We have emphasized repeatedly that our results are attributable to the
assumption that momentum traders make “simple” forecasts—i.e., they can
only run univariate regressions. But even if one accepts this restriction at
face value, it begs the following question: Why do all traders have to use the
same single forecasting variable? Why not allow for some heterogeneity in
trading styles, with different groups focusing on different predictive variables?

Given the existence of the newswatchers and the underreaction that they
create, it is certainly natural to begin an examination of simple arbitrage
strategies with the sort of momentum-trading style that we have considered
thus far. However, once it is understood that the momentum traders must—if
they are the only arbitrageurs active in the market—ultimately cause prices
to overreact, we then ought to think about the effects of second-round “con-
trarian” strategies that might be designed to exploit this overreaction.

z=3

z=6

z=9

z=12

Figure 3. Cumulative impulse response and the information diffusion parameter. The
information diffusion parameter z takes on values of 3, 6, 9, and 12. The other parameter values
are set as follows: Momentum traders’ horizon j is 12, the volatility of news shocks is 0.5, and
momentum traders’ risk tolerance gamma is 103.
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To incorporate such contrarian strategies into our model, we assume that
there is a total risk tolerance of g available to engage in arbitrage activity.
We also continue to assume that all arbitrageurs have horizons of j peri-
ods. But there are now two arbitrage styles. A fraction w of the arbi-
trageurs are momentum traders, who use DPt21 to forecast ~Pt1j 2 Pt!. The
remaining ~1 2 w! are contrarians, who use DPt212c to forecast ~Pt1j 2 Pt!.
If we choose the lag length c properly, the contrarians will in equilibrium
put negative weight on DPt212c in making these forecasts.

Suppose provisionally that one takes the fraction w as fixed. Then the
equilibrium is a natural generalization of that seen above. In particular,
prices will be given by

Pt 5 Dt 1 $~z 2 1!et11 1 ~z 2 2!et121{{{1et1z21%0z

1 (
i51

j

~fM DPt2i 1 fCDPt2c-i !,
~9!

where fM and fC now denote the trading elasticities of the momentum
traders and the contrarians respectively. These elasticities in turn satisfy

fM 5 wg cov~Pt1j 2 Pt ,DPt21!0$var~DP !varM ~Pt1j 2 Pt!% ~10!

fC 5 ~1 2 w!g cov~Pt1j 2 Pt ,DPt212c!0$var~DP !varC ~Pt1j 2 Pt!%. ~11!

Equilibrium now involves a two-dimensional fixed point in ~fM,fC ! such
that prices are given by equation ~9!, and at the same time equations ~10!
and ~11! are satisfied. Although this is a more complicated problem than
before, it is still straightforward to solve numerically. Of course, this is no
longer the end of the story, since we still need to endogenize w. This can be
done by imposing an indifference condition: In an interior solution where
0 , w , 1, the utilities of the momentum traders and contrarians must be
equalized, so nobody wants to switch styles. It turns out that the equal-
utility condition can be simply rewritten in terms of either conditional vari-
ances or covariances of prices. ~See Appendix A for a proof.! This gives us the
following proposition.

PROPOSITION 3: In an interior solution with 0 , w , 1, it must be that:

(i) var~Pt1j 2 Pt6D Pt21! 5 var~Pt1j 2 Pt6DPt212c!; or equivalently
(ii) 6cov~~Pt1j 2 Pt!,DPt21!6 5 6cov~~Pt1j 2 Pt!,DPt212c!6; or equivalently

(iii) cov~DPt11,DPt21! 1 cov~DPt12,DPt21! 1 {{{ 1 cov~DPt1j ,DPt21! 5
2cov~DPt11,DPt212c! 2 cov~DPt12,DPt212c! 2{{{2 cov~DPt1j,DPt212c!.

The essence of the proposition is that in order for contrarians to be active
in equilibrium ~i.e., to have w , 1! there must be as much profit opportunity
in the contrarian strategy as in the momentum strategy. Loosely speaking,
this amounts to saying that the negative autocorrelations in the reversal
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phase must cumulatively be as large in absolute magnitude as the positive
autocorrelations in the initial underreaction phase. Thus, adding the option
of a contrarian strategy to the model cannot overturn the basic result that if
there is underreaction in the short run, there must eventually be overreac-
tion at some later point.

As it turns out, for a large range of parameter values, we can make a
much stronger statement: The contrarian strategy is not used at all, for any
choice of c. Rather, we get a corner solution of w 5 1, in which all arbi-
trageurs endogenously choose to use a momentum strategy. This is in fact
the outcome for every set of parameters that appears in Figures 1–3. Thus
our previous numerical solutions are wholly unaffected by adding contrari-
ans to the mix.

In order to get contrarian strategies to be adopted in equilibrium, we have
to crank up the aggregate risk tolerance g to a very high value. This does
two things: First, it drives down the expected profits to the momentum strat-
egy; and second, it causes the degree of overreaction to increase. Both of
these effects raise the relative appeal of being a contrarian to the point that
some arbitrageurs eventually switch over from the momentum strategy. Fig-
ure 4 illustrates. The figure considers a situation where z 5 3, j 5 1, where
the contrarians trade at a lag that is c 5 2 periods greater than the momen-
tum traders, and where the risk tolerance takes on the value 100.3.

Given these parameter values, w 5 0.786. That is, 78.6 percent of traders
opt to play momentum strategies and the remaining 21.4 percent become
contrarians. The contrarians appear to have a modest stabilizing impact—
the impulse response function peaks at 1.197 when there are only momen-
tum traders, and this figure declines somewhat, to 1.146, when we allow for
contrarian strategies. Nevertheless, price dynamics are still remarkably sim-
ilar to what we have seen throughout. This underscores our key point: Across
a wide range of parameter values, allowing for contrarian strategies need
not alter the important qualitative features of our model.

A.2. Arbitrageurs Can Run Bivariate Regressions

To further relax our assumptions in the direction of rationality, we now
ask what happens if every arbitrageur becomes incrementally smarter, and
can condition on not one, but two lags of past prices. Said differently, instead
of forcing each arbitrageur to choose whether to play a momentum strategy
~and condition on DPt21! or a contrarian strategy ~and condition on DPt212c!,
we now allow them all to play an optimal blended strategy.

The results of this experiment are also illustrated in Figure 4. Relative to
the previous case of segregated momentum and contrarian trading, allowing
for bivariate-regression-running arbitrageurs is more stabilizing. For exam-
ple, keeping all other parameters the same as before, the impulse response
function now reaches a peak of only 1.125, as compared to the value of 1.146
with segregated momentum and contrarian trading. Nevertheless, its qual-
itative shape continues to remain similar. Thus, although increasing the com-
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putational power of arbitrageurs obviously attenuates the results, it does
not appear that we are in a knife-edge situation where everything hangs on
them being able to run only univariate regressions.

B. Fully Rational Arbitrage

Finally, it is natural to ask whether our basic results are robust to the
introduction of a class of fully rational arbitrageurs. To address this ques-
tion, we extend the baseline model of Section II as follows. In addition to the
newswatchers and the momentum traders, we add a third group of traders,
whom we label the “smart money.” To give these smart-money traders the
best shot at making the market efficient, we consider an extreme case where
they can observe and rationally condition on everything in the model that is
observed by any other trader. Thus, at time t, the smart-money traders ob-
serve all the fundamental information that is available to any of the
newswatchers—that is, they see et1z21 and all preceding news innovations

w=1

w=0.786

Both

Lags

Figure 4. Cumulative impulse response and contrarian trading. Cumulative impulse
responses for all-momentum trading equilibrium ~w 5 1!; the equilibrium in which traders
endogenously choose whether to follow either momentum or contrarian strategies ~w 5 0.786!;
and the equilibrium in which traders can optimally condition on both momentum and contrar-
ian variables ~“Both”!. The other parameter values are set as follows: the information diffusion
parameter z is 3, the momentum traders’ horizon j is 1, the volatility of news shocks is 1, and
the risk tolerance gamma is 100.3. The contrarians are assumed to trade based on returns from
three periods ago.
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in their entirety. They also can use the complete past history of prices in
their forecasts. Like everyone else, the smart money have CARA utility. Fi-
nally, each generation has a one-period horizon.

Unlike in the cases with contrarian trading considered in Sections III.A.1
and III.A.2 above, it is very difficult to solve explicitly for the equilibrium
with the smart-money traders, either analytically or via numerical methods.
This is because in the context of our infinite-horizon model, the optimal
forecasts of the smart money are a function of an unbounded set of vari-
ables, as they condition on the entire past history of prices. ~They really
have to be very smart in this model to implement fully rational behavior.!
Nevertheless, as proven in the Appendix A, we are able to make the follow-
ing strong general statements about the properties of equilibrium:

PROPOSITION 4: Assume that the risk tolerance of the smart-money traders is
finite. In any covariance-stationary equilibrium, given a one-unit shock et1z21
that begins to diffuse at time t:

(i) There is always underreaction, in the sense that prices rise by less
than one at time t.

(ii) There is active momentum trading.
(iii) There is always overreaction, in the sense that the cumulative impulse

response of prices peaks at a value that is strictly greater than one.

If the risk tolerance of the smart money traders is infinite, prices follow a
random walk, and there is no momentum trading: f 5 0.

The proposition formalizes the intuitive point—common to many models
in this genre—that risk-averse fully rational arbitrageurs attenuate, but do
not eliminate, the effects induced by other less-than-rational traders. In our
particular setting, all the key qualitative results about the dynamics of prices
continue to apply.

IV. Empirical Implications

We will not belabor the fact that our model delivers the right first-order
predictions for asset returns: Positive correlations at short horizons, and
negative correlations at longer horizons. After all, it is designed to do just
that. More interesting are the auxiliary implications, which should allow it
to be tested against other candidate theories of underreaction and overreaction.

A. In What Stocks Do Momentum Strategies Work Best?

In our model, short-term return continuation is a consequence of the grad-
ual diffusion of private information, combined with the failure of newswatch-
ers to extract this information from prices. This gradual-information-
diffusion story is logically distinct from the mechanism in other models,
such as Barberis et al. ~1998!, who emphasize a conservatism bias ~Edwards
~1968!! with respect to public information. Moreover, it has testable cross-
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sectional implications. If momentum in stock returns does indeed come from
gradual information f low, then momentum strategies of the sort proposed by
Jegadeesh and Titman ~1993! should be most profitable among those stocks
for which information moves most slowly across the investing public.

In research conducted subsequent to the development of the model here,
we attempt in Hong, Lim, and Stein ~2000! to test this hypothesis. To do so,
we consider two different proxies for the rate of information diffusion. The
first is firm size. It seems plausible that information about small firms gets
out more slowly; this would happen if, for example, investors face fixed costs
of information acquisition, and choose to devote more effort to learning about
those stocks in which they can take large positions. Of course, one must be
careful in drawing inferences because size may also capture a variety of
other factors, such as cross-stock differences in arbitrage costs.25 In light of
this concern, we use as a second, and hopefully purer, proxy for information
f low a stock’s residual analyst coverage, after controlling for size.26

With respect to size, we find that, once one moves past the very smallest-
capitalization stocks ~where price discreteness and0or very thin market-
making capacity are issues!, the profitability of Jegadeesh–Titman-style six-
month momentum strategies declines sharply with market cap. With respect
to residual analyst coverage, not only are momentum strategies substan-
tially more profitable at a horizon of six months in low-analyst-coverage
stocks, they are also profitable for longer; there is pronounced positive cor-
relation of returns for up to about two years in these stocks, as opposed to
less than one year in high-coverage stocks. Size and residual coverage also
interact in an interesting and economically plausible fashion: The marginal
impact of analyst coverage is most pronounced in smaller stocks, which have
fewer analysts to begin with. Though it may be possible to come up with
alternative interpretations, all these pieces of evidence would seem to be
strongly consistent with our emphasis in this paper on gradual information
f low as the root cause of underreaction.

B. Linking Momentum to Overreaction in the Cross Section

There is also a second, more subtle cross-sectional implication of our model
pertaining to the rate of information f low. In Figure 3 we saw that not only
does slower information diffusion lead to higher short-run return correla-
tions, but by making stocks more attractive to momentum traders, it also
~for a wide range of parameter values! leads to more pronounced overshoot-
ing and stronger reversals in the longer run. In other words, the same stocks
that we find in Hong et al. ~2000! to be most “momentum-prone”—small
stocks with relatively few analysts—should also be most “reversal-prone.”

25 Consequently, one might argue that virtually any behavioral model would be consistent
with there being more predictability in small stocks.

26 Of course, analyst coverage is not an ideal proxy either, as it may be endogenously related
to a number of other stock-specific factors besides size. So in various sensitivity tests, we also
control for the correlation between analyst coverage and share turnover, industry factors, beta,
and market-to-book.
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Although this prediction has not to our knowledge been subject to detailed
investigation, it is broadly consistent with recent work which finds that much
of the long-horizon predictability that has been documented in the stock mar-
ket is attributable to smaller-cap companies.27 As noted above, there is the ca-
veat that size may be proxying for a number of other factors, so it would be
desirable to create a sharper test, as in Hong et al. ~2000!, perhaps using an-
alyst coverage or some other nonsize measure of momentum-proneness.

C. Differential Dynamics in Response to Public versus
Private News Shocks

As we have stressed repeatedly, the most natural interpretation of the e’s
in our model is that they represent information that is initially private, and
that gradually diffuses across the population of investors. Thus, our primary
contribution is to show that the equilibrium impulse response to such pri-
vate information must be hump-shaped, with underreaction in the short run
giving way to eventual overreaction. But what about the impulse response to
news that is simultaneously observed by all investors, such as earnings
announcements?

It is easy to embellish our model so that it also generates short-run un-
derreaction to public news. For example, one might argue that although the
news announcement itself ~e.g., “earnings are up by 10 percent”! is public, it
requires some other, private, information ~e.g., knowledge of the stochastic
process governing earnings! to convert this news into a judgment about value.
If this is true, the market’s response to public news involves the aggregation
of private signals, and our previous underreaction results continue to apply.

On the one hand, this sort of patch adds an element of descriptive realism,
given the large body of empirical evidence on post-event drift. But the more
interesting and subtle question is this: If we augment the model so as to
deliver short-run underreaction to public news, what does it have to say
about whether there is overreaction in the longer run to this same news? Is
the impulse response function hump-shaped as before, or do prices drift grad-
ually to the correct level without going too far?

Unlike with private news, the answer is now less clear. This is because the
inference problem for momentum traders is simplif ied. Recall from above
that with private news a momentum trader never knows whether he is buy-
ing early or late in the cycle; that is, he cannot tell if a price increase is the
result of recent news or of past rounds of momentum trade. But if momen-
tum traders can condition on the fact that there was a public news announce-
ment at some given date t, they can refine their strategies. In particular,
they can make their strategies time-dependent, so that they only trend-
chase aggressively in the periods right after public news, and lay low at other
times. If they do this, there need be no overreaction to public news in equilib-
rium; rather, the impulse response function may be increasing everywhere.

27 Fama ~1998! argues that this evidence is problematic for existing behavioral models, as
they do not clearly predict that overreaction should be concentrated in smaller stocks.
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Of course, it is conceivable that momentum traders are not so sophisti-
cated, and continue to use strategies that do not depend on how recently
public news was released. If so, the impulse response to public news is also
hump-shaped. But the important point is that the logic of our model admits
~even strongly suggests! the possibility that the response to public news looks
different than that to private information. This is clearly a testable proposition.

D. Trading Horizons and the Pattern of Return Autocorrelations

One novel feature of our model is that it explicitly links momentum trad-
ers’ horizons to the time pattern of return autocorrelations. This link is loosely
suggested by Proposition 2, and it emerges clearly in the comparative statics
results of Figure 1: The longer the momentum traders’ horizon j, the longer
it takes for the autocorrelations to switch from positive to negative.

The first thing to note in this regard is that our model seems to get the
average magnitudes about right. For example, Jegadeesh and Titman ~1993!
find that autocorrelations for stock portfolios are positive for roughly 12
months, and then turn systematically negative. According to our calcula-
tions ~see Appendix B!, this is what one should expect if j is on the order of
12–18 months, which sounds like a plausible value for the horizon of a trad-
ing strategy.28

A second observation is that we can make cross-sectional predictions, to
the extent that we can identify exogenous factors that inf luence the trading
horizon j. One natural candidate for such a factor is trading costs. It seems
plausible to conjecture that as trading costs increase, momentum traders
choose to hold their positions longer. If so, we would expect stocks with rel-
atively high bid-ask spreads to have autocorrelations that stay positive for
longer periods of time before turning negative. Or going across assets classes,
we would expect the same thing for assets such as houses, and collectibles,
where trading costs are no doubt significantly higher.29 Some evidence on
this latter point is provided by Cutler, Poterba, and Summers ~1991!. They
find that, in contrast to equities, the autocorrelations for house and farm
prices are positive at lags of up to three years, and for collectibles, at lags of
up to two years.

E. Anecdotal Evidence on Professional Investment Strategies

In our model, momentum traders have two key characteristics: ~1! aside
from their inability to run multiple regressions, they are rational maximiz-
ers who make money on average; and ~2! they impose a negative externality
on others. The latter feature arises because someone entering the market at

28 As a benchmark, turnover on the NYSE has been in the range of 50–60 percent in recent
years, implying an average holding period of 20–24 months. Of course, momentum traders may
have shorter horizons than the average investor.

29 Some care should be taken in testing this prediction, since assets with higher trading costs
are likely to have more stale prices, which can induce spuriously positive autocorrelations in
measured returns.
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any time t does not know how heavily invested momentum traders are in the
aggregate at this time, and hence cannot predict whether or not there will be
large-scale unwinding of momentum positions in the near future.

Anecdotal evidence supports both of these premises. With regard to the
near-rationality of momentum strategies, it should be noted that a number
of large and presumably sophisticated money managers use what are com-
monly described as momentum approaches, that “emphasize accelerating sales,
earnings, or even stock prices . . . and focus less on traditional valuation
measures such as price-to-earnings ratios . . .” ~Ip ~1997!!.30 This contrasts
with the more pejorative view of positive-feedback trading that prevails in
prior academic work such as Delong et al ~1990!.

With regard to the negative externalities, it seems that other professional
investors do in fact worry a lot about the dangers of momentum traders
unwinding their positions. The following quotations from money managers
illustrate these concerns: “Before I look at a stock, I take a look at the ~SEC!
filings to see who the major shareholders are. If you see a large amount of
momentum money in there, you have to accept that there’s a high risk . . .”;
“If you’re in with managers who are very momentum oriented . . . you have
to be aware that’s a risk going in. They come barreling out of those stocks,
and they’re not patient about it.” ~Ip ~1997!!.

In addition to these two premises, anecdotal evidence is also consistent
with one of our key predictions: momentum traders are more active in small
stocks, where analyst coverage is thinner and information diffuses more slowly.
According to a leading pension fund consultant: “Most of the momentum
players play in the small and mid-cap stocks.” And a well-known momentum
investor says that he typically focuses on small companies because “the mar-
ket is inefficient for smaller companies.”31

More broadly, the extended version of the model with contrarians fits with
the observation that there are a variety of professional money-management
“styles,” each of which emphasizes a different subset of public information.
Such heterogeneity cannot be understood in the context of the standard ra-
tional model, where there is only one “correct” style, that which processes all
available information in an optimal fashion. But it is a natural feature of
our bounded-rationality framework, which allows multiple styles to coexist
and earn similar profits.

V. Comparison to Related Work

As noted in the Introduction, this paper shares the same goal as recent
work by Barberis et al. ~1998! and Daniel et al. ~1998!—that is, to construct
a plausible model that delivers a unified account of asset-price continuations

30 Among the large investors labeled momentum players are Nicholas-Applegate Capital Man-
agement, Pilgrim Baxter & Associates, Friess Associates, and Richard Driehaus, who was ranked
first among 1,200 managers of all styles for the five years ended December 1995 by Perfor-
mance Analytics, a pension advisory firm. See Rehfeld ~1996!.

31 The consultant is Robert Moseson of Performance Analytics, quoted in Jereski and Lohse
~1996!. The momentum investor is Richard Driehaus, quoted in Rehfeld ~1996!.
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and reversals. However, the approach taken here is quite different. Barberis
et al. and Daniel et al. use representative agent models, while our results
are driven by the externalities that arise when heterogeneous traders inter-
act with one another.32 Consequently, many of the auxiliary empirical impli-
cations of our model are distinct.

First, it is impossible for a representative agent model to make predictions
linking trading horizons to the temporal pattern of autocorrelations, as we
do in Section IV.D. Second, neither the Barberis et al. model nor the Daniel
et al. model would seem to be able to easily generate our prediction that both
continuations and reversals are more pronounced in stocks with thinner an-
alyst coverage ~Sections IV.A and IV.B!. A further difference with Barberis
et al. is that our model allows for a differential impulse response to public
and private shocks ~Section IV.C!; theirs only considers public news.

In its focus on the interaction of different types of traders, including those
who behave in a trend-chasing fashion, this paper is closer to earlier models
of positive-feedback trading by DeLong et al. ~1990! and Cutler, Poterba and
Summers ~1990!. However, there are significant differences with this work
as well. For example, in DeLong et al., the positive-feedback traders are
extremely irrational, and get badly exploited by a group of rational front-
runners.33 In our model, the momentum traders are very nearly rational,
and actually manage to take advantage of the other group of traders, the
newswatchers. This distinction is closely related to the fact that in DeLong
et al., there is never any underreaction. There is short-run positive correla-
tion of returns, but this ref lects an initial overreaction, followed by even
more overreaction.34

At a more general level, this paper revisits several themes that have been
prominent in previous theoretical work. The notion that one group of opti-
mizing traders might create a negative informational externality, and thereby
destabilize prices even while they are making profits, also shows up in Stein
~1987!. Stretching a bit further, there is an interesting analogy here with
the ideas of Banerjee ~1992! and Bikhchandani et al. ~1992! on informational
cascades. In these models, agents move sequentially. In equilibrium, each
rationally bases his decision on the actions of the agent before him, even

32 Barberis et al. ~1998! develop a regime-switching learning model, where investors wind up
oscillating between two states: One where they think that earnings shocks are excessively
transitory; and one where they think that earnings shocks are excessively persistent. Daniel
et al. ~1998! emphasize the idea that investors are likely to be overconfident in the precision of
their private information, and that this overconfidence will vary over time as they learn about
the accuracy of their past predictions.

33 In Cutler, Poterba, and Summers ~1990!, positive-feedback traders can make money be-
cause there is background underreaction, as in our model. However, since the feedback behavior
is assumed, rather than derived, their model does not yield many of the predictions discussed
in Section IV.

34 Also, the model of DeLong et al. ~1990! does not really endogenously deliver reversals.
Rather, prices are just forced back to fundamentals on a terminal date. In our model, the
reversal phase is more endogenous, corresponding to the unwinding of momentum traders’
positions. It also involves more complex dynamics, with the sort of damped oscillations seen in
the figures.
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though this inf licts a negative informational externality on those that fol-
low. Very much the same thing could be said of the generations of momen-
tum traders in this model.

VI. Conclusions

At the outset, we argued that any new “behavioral” theory of asset pricing
should be judged according to three criteria: ~1! It should rest on assump-
tions about investor behavior that are either a priori plausible or consistent
with casual observation; ~2! It should explain the existing evidence in a par-
simonious and unified way; and ~3! It should make a number of further
predictions which can be tested and ultimately validated.

How well have we done on these three scores? With respect to the first, we
believe that our particular rendition of bounded rationality—as the ability
to process a small subset of the available information in an unbiased way—is
both plausible and intuitively appealing. Moreover, in our framework, this
sort of bounded rationality implies a widespread reliance by arbitrageurs on
simple momentum strategies. As we have discussed, this implication ap-
pears to be strongly consistent with what is observed in the real world.

In terms of the parsimony0unity criterion, it should be emphasized that
everything in our model is driven by just one primitive type of shock: Slowly
diffusing news about future fundamentals. There are no other exogenous
sources of investor sentiment, and no liquidity disturbances. Our main con-
ceptual contribution is to show that if there is ever any short-run under-
reaction to this kind of news on the part of one set of traders, then ~given the
simple nature of arbitrage strategies! there must eventually be overreaction
in the longer run as well.

Finally, our model does deliver several testable auxiliary implications.Among
the most noteworthy are the following: ~1! Both short-run continuation and long-
run reversals should be more pronounced in those ~small, low-analyst-coverage!
stocks where information diffuses more slowly; ~2! There may be more long-
run overreaction to information that is initially private than to public news an-
nouncements; and ~3! There should be a relationship between momentum traders’
horizons and the pattern of return autocorrelations. Evidence supportive of the
first prediction is already emerging; we hope to explore some of the others in
future work.

Appendix A. Proofs

A. ARMA Representation of the Return Process

Let us begin by recalling equation ~5! from the text ~suppressing constants!:

Pt 5 Dt 1
~z 2 1!

z
et111{{{1

1
z

et1z21 1 (
i51

j

fDPt2i . ~A1!
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It follows that

DPt 5
(
i50

z21

et11

z
1 fDPt21 2 fDPt2~ j11! . ~A2!

Assuming that f satisfies proper conditions to be specified, DPt is a covari-
ance stationary process. Let

ak [ E @DPt DPt2k#

~i.e. the unconditional autocovariance lagged k periods!. When k 5 0, we
have the unconditional variance. The autocovariances of this process satisfy
the following Yule–Walker equations:

a0 5 EF(
i50

z21 et1i

z
DPtG 1 fa1 2 faj11. ~A3!

And for k . 0, we have

ak 5 EF(
i50

z21 et1i

z
DPt2kG 1 fak21 2 fak2~ j11! . ~A4!

It is not hard to verify that for k . z 2 1,

EF(
i51

z21 et1i

z
DPt2kG 5 0. ~A5!

And for k # z 2 1, we have

EF(
i50

z21 et1i

z
DPt2kG 5

~z 2 k!s2

z 2 1 fEF(
i50

z21 et1i

z
DPt2~k11!G

2 fEF(
i50

z21 et1i

z
DPt2~k1j11!G,

~A6!

where s is the standard deviation of the es. Solving the Yule–Walker equa-
tions reduces to solving a system of j 1 2 linear equations. Next, the optimal
strategies of the momentum traders are given by

zt
M 5

gE @Pt1j 2 Pt 6DPt21#

Var @Pt1j 2 Pt 6DPt21#
, ~A7!

where

Pt1j 2 Pt 5 DPt1j1{{{1DPt11.
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In equilibrium,

zt
M 5 fDPt21. ~A8!

Finally, it follows that

Cov~DPt21, Pt1j 2 Pt! 5 aj111{{{1a2,

and

Var~Pt1j2 Pt! 5 ja0 1 2~ j 2 1!a11{{{12~ j 2 ~ j 2 1!!aj21.

Using these formulas, the problem is reduced to finding a fixed point in f
that satisfies the equilibrium condition ~A8!. Given the equilibrium f, we
then need to verify that the resulting equilibrium ARMA process is in fact
covariance stationary ~since all of our formulas depend crucially on this
assumption!.

B. Stationarity

We next provide a characterization for the covariance stationarity of a
conjectured return process. This condition is just that the roots of

1 2 fx 1 fx j11 5 0 ~A9!

lie outside the unit circle ~see, e.g., Hamilton ~1994!!.

LEMMA A.1: The return process specified in equation (A2) is a covariance
stationary process only if 6f6 , 1.

Proof: Proof is by induction on j. For j 5 1, the return process follows an
ARMA~2, z!. So the conditions for covariance stationarity are: 22f , 1 and
21 , f , 1 ~see, e.g., Hamilton ~1994!!. The stated result follows for j 5 1.
Apply the inductive hypothesis and assume the result holds for j 5 k. From
equation ~A9!, it follows that the roots x of

1 2 fx 1 fx k11 5 0

must lie outside the unit circle ~e.g., 6x 6 . 1!. It follows that

61 2 fx 6 5 6f66x 6k11. ~A10!

Hence, as k increases, it follows that 6f6 decreases for equation ~A10! to hold.
The stated result follows for arbitrary j. Q.E.D.

We use this result to characterize a number of properties of a conjectured
covariance stationary equilibrium.
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Proof of Lemma 1: We show that f . 0 in a covariance stationary equi-
librium by contradiction. Suppose it is not, so that f # 0. It is easy to verify
from equation ~A4! and from Lemma A.1 that

ak $ 0 ∀k ra2 1 a3 1{{{1 aj11 . 0,

implying that f . 0, leading to a contradiction. Q.E.D.

C. Existence and Numerical Computation

An equilibrium f satisfying the covariance stationary condition in Lemma
A.1 does not exist for arbitrary parameter values. It is easy to verify however
that a covariance stationary equilibrium does exist for sufficiently small g.

LEMMA A.2: For g sufficiently small, there exists a covariance stationary
equilibrium.

Proof: It is easy to show that for g sufficiently small, we can apply Brouw-
er’s fixed point theorem. Q.E.D.

In general, the equilibrium needs to be solved numerically. For the case of
j 5 1, we can always verify that the resulting f leads to covariance station-
arity. For arbitrary j, we only have a necessary condition although the cal-
culations for the autocovariances would likely explode for a f that does not
lead to a covariance stationary process. So we always begin our calculations
for j 51 and g small and use the resulting solutions to bootstrap our way to
other regions in the parameter space. The solutions are gotten easily. When
we move outside the covariance stationary region of the parameter space,
autocovariances take on nonsensible values such as negative values for the
unconditional variance or autocovariances that do not satisfy the standard
property that

6ak 6 , 6a0 6, k . 0

in a covariance stationary equilibrium. In general, we have not had much
problem finding fixed points for wide parameter regions around those ex-
hibited in the text.

D. Remaining Proofs

Proof of Proposition 3: The equilibrium condition to determine w is for the
utilities from the two strategies to be equal. Given our assumptions on the
preferences of the momentum and contrarian investors and the distributions
of the es, it follows from Grossman and Stiglitz ~1980! that this is equivalent
to the conditional variance of the j-period returns being equal across the two
strategies. Given that both momentum and contrarian investors have the
same j-period horizon, it follows that this is equivalent to the conditional
covariance of the j-period returns being equal across the two strategies. Q.E.D.
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Proof of Proposition 4: Suppose initially that there are only newswatchers
and smart money investors ~i.e., there are no momentum investors!. Smart
money investors have finite risk tolerance given by gS and maximize one-
period returns. We conjecture the following equilibrium price function:

Pt 5 Dt 1
~z 1 1!

z
et11 1{{{1

1
z

et1z21 1 (
i51

z21

bi et1i . ~A11!

Note that we are once again suppressing all calculations related to the con-
stant. The holdings of the smart money investors are given by

zt
S 5

gSE @Pt11 2 Pt 6Dt ,et11,{{{ ,et1z21#

Var @Pt11 2 Pt 6Dt ,et11,{{{ ,et1z21#
. ~A12!

At the conjectured equilibrium price given in equation ~A11!, we have that

zt
S 5 (

i5t11

t1z21

bi ei . ~A13!

Equation ~A13! then gives the following set of equations that determine the
bs in equilibrium:

b1 5 gS

1
z

2 b1

S1
z

1 bz21D2

s2

~A14!

and

bi 5 gS

1
z

1 ~bi21 2 bi !

S1
z

1 bz21D2

s2

, i 5 2, . . . , z 2 1. ~A15!

Using equations ~A14! and ~A15!, it is not hard to show that in a covariance
stationary equilibrium: ~1! the returns still exhibit positive serial correlation
for finite levels of smart money risk tolerance, gS, `, and ~2! when smart
money investors are risk neutral, prices follow a random walk.

Since returns are serially correlated when the risk tolerance of smart money
is finite, f 5 0 cannot be an equilibrium when we add momentum traders to
the model. Since smart money investors have access to the entire history of
past price changes, it follows from the logic of equation ~A11! that the con-
jectured price function with momentum traders is now
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Table AI

Comparative Statics with Respect to Momentum Traders’ Horizon
Momentum traders’ horizon j takes on values 3, 6, 9, 12, 15, and 18. f is the intensity of momentum trade described in equation ~7!. Pt is the
stock price at time t. Pt

* is the rational expectations stock price in equation ~2!. The other parameter values are set as follows: The information
diffusion parameter z 5 12, the volatility of news shocks s 5 0.5, and the risk tolerance g 5 103.

Momentum Traders’ Horizon j 5 3 j 5 6 j 5 9 j 5 12 j 5 15 j 5 18

f 0.5550 0.4455 0.3262 0.2605 0.2263 0.2015
Standard deviation of ~Pt 2 Pt21! 0.2229 0.2322 0.2179 0.2028 0.1908 0.1833
Standard deviation of ~Pt 2 Pt

* ! at f 5 0 0.9373 0.9373 0.9373 0.9373 0.9373 0.9373
Standard deviation of ~Pt 2 Pt

* ! 0.8011 0.8438 0.9103 0.9365 0.9524 0.9604

Cumulative impulse response at lag
0 0.0833 0.0833 0.0833 0.0833 0.0833 0.0833
1 0.2129 0.2038 0.1939 0.1884 0.1855 0.1835
2 0.3682 0.3408 0.3132 0.2991 0.2920 0.2870
3 0.5377 0.4851 0.4355 0.4113 0.3994 0.3912
4 0.6688 0.6328 0.5588 0.5238 0.5071 0.4955
5 0.7530 0.7819 0.6823 0.6365 0.6147 0.5999
6 0.7969 0.9317 0.8059 0.7492 0.7225 0.7042
7 0.8105 1.0446 0.9296 0.8618 0.8302 0.8086
8 0.8287 1.1246 1.0533 0.9745 0.9379 0.9129
9 0.8753 1.1825 1.1769 1.0872 1.0456 1.0173

10 0.9602 1.2273 1.2734 1.1999 1.1533 1.1217
11 1.0830 1.2649 1.3522 1.3126 1.2610 1.2260
12 1.1412 1.2151 1.3389 1.3420 1.2854 1.2471
13 1.1475 1.1263 1.2947 1.3279 1.2909 1.2513
14 1.1040 1.0364 1.2401 1.2969 1.2921 1.2522
15 1.0116 0.9607 1.1820 1.2600 1.2924 1.2523
16 0.9281 0.9012 1.1227 1.2211 1.2736 1.2524
17 0.8782 0.8547 1.0630 1.1817 1.2462 1.2524
18 0.8747 0.8173 1.0032 1.1420 1.2160 1.2524
19 0.9240 0.8228 0.9433 1.1024 1.1848 1.2356
20 0.9977 0.8648 0.8923 1.0627 1.1534 1.2120
21 1.0663 0.9235 0.8500 1.0230 1.1219 1.1864
22 1.1063 0.9834 0.8405 0.9833 1.0904 1.1603
23 1.1012 1.0366 0.8518 0.9436 1.0589 1.1340
24 1.0574 1.0810 0.8733 0.9038 1.0274 1.1076
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25 0.9951 1.1175 0.8993 0.8859 0.9959 1.0813
26 0.9382 1.1313 0.9271 0.8848 0.9644 1.0550
27 0.9096 1.1187 0.9557 0.8926 0.9329 1.0286
28 0.9180 1.0870 0.9845 0.9043 0.9202 1.0023
29 0.9572 1.0461 1.0134 0.9175 0.9161 0.9759
30 1.0105 1.0042 1.0395 0.9312 0.9149 0.9496
31 1.0560 0.9658 1.0618 0.9451 0.9146 0.9401
32 1.0766 0.9324 1.0722 0.9590 0.9187 0.9373
33 1.0663 0.9114 1.0719 0.9730 0.9259 0.9365
34 1.0309 0.9076 1.0648 0.9870 0.9344 0.9364
35 0.9861 0.9201 1.0540 1.0010 0.9433 0.9363

Return autocorrelations at lag
1 0.8630 0.9331 0.9458 0.9466 0.9465 0.9436
2 0.5441 0.7888 0.8415 0.8504 0.8673 0.8634
3 0.1706 0.6063 0.7048 0.7388 0.7813 0.7782
4 ~0.1203! 0.4039 0.5561 0.6220 0.6907 0.6920
5 ~0.2115! 0.1888 0.4031 0.5036 0.5870 0.6054
6 ~0.1035! ~0.0293! 0.2492 0.3846 0.4774 0.5182
7 0.1284 ~0.2138! 0.0963 0.2654 0.3658 0.4285
8 0.3635 ~0.3233! ~0.0522! 0.1464 0.2537 0.3270
9 0.4735 ~0.3637! ~0.1883! 0.0276 0.1415 0.2208

10 0.4096 ~0.3533! ~0.3027! ~0.0898! 0.0300 0.1137
11 0.1910 ~0.3051! ~0.3708! ~0.2027! ~0.0784! 0.0087
12 ~0.0958! ~0.2200! ~0.3955! ~0.2994! ~0.1741! ~0.0846!
13 ~0.3160! ~0.0850! ~0.3589! ~0.3385! ~0.2162! ~0.1215!
14 ~0.4026! 0.0574 ~0.2985! ~0.3348! ~0.2452! ~0.1465!
15 ~0.3294! 0.1696 ~0.2289! ~0.3088! ~0.2697! ~0.1690!
16 ~0.1297! 0.2376 ~0.1560! ~0.2729! ~0.2873! ~0.1909!
17 0.1034 0.2632 ~0.0823! ~0.2332! ~0.2792! ~0.2125!
18 0.2808 0.2532 ~0.0098! ~0.1919! ~0.2595! ~0.2330!
19 0.3387 0.2108 0.0582 ~0.1502! ~0.2355! ~0.2485!
20 0.2599 0.1318 0.1177 ~0.1083! ~0.2096! ~0.2402!
21 0.0869 0.0331 0.1594 ~0.0663! ~0.1803! ~0.2224!
22 ~0.1076! ~0.0608! 0.1810 ~0.0245! ~0.1488! ~0.2016!
23 ~0.2477! ~0.1329! 0.1762 0.0170 ~0.1165! ~0.1801!
24 ~0.2817! ~0.1765! 0.1549 0.0573 ~0.0838! ~0.1583!
25 ~0.2046! ~0.1914! 0.1252 0.0929 ~0.0510! ~0.1363!
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Table AII

Comparative Statics with Respect to Momentum Traders’ Risk Tolerance
Momentum traders’ risk tolerance g takes on values 1013, 1011, 109, 107, 105, and 103. f is the intensity of momentum trade described in
equation ~7!. Pt is the stock price at time t. Pt

* is the rational expectations stock price described in equation ~2!. The other parameter values are
set as follows: The information diffusion parameter z 5 12, the momentum traders’ horizon j 5 12, and the volatility of news shocks s 5 0.5.

Momentum Traders’ Risk Tolerance g 5 1013 g 5 1011 g 5 109 g 5 107 g 5 105 g 5 103

f 0.1316 0.1453 0.1625 0.1848 0.2152 0.2605
Standard deviation of ~Pt 2 Pt21! 0.1662 0.1691 0.1731 0.1786 0.1872 0.2028
Standard deviation of ~Pt 2 Pt

* ! at f 5 0 0.9373 0.9373 0.9373 0.9373 0.9373 0.9373
Standard deviation of ~Pt 2 Pt

* ! 0.9070 0.8998 0.8999 0.9021 0.9102 0.9365

Cumulative impulse response at lag
0 0.0833 0.0833 0.0833 0.0833 0.0833 0.0833
1 0.1776 0.1788 0.1802 0.1821 0.1846 0.1884
2 0.2734 0.2760 0.2793 0.2836 0.2897 0.2991
3 0.3693 0.3734 0.3787 0.3857 0.3957 0.4113
4 0.4652 0.4709 0.4782 0.4879 0.5018 0.5238
5 0.5612 0.5684 0.5777 0.5902 0.6080 0.6365
6 0.6572 0.6659 0.6772 0.6924 0.7142 0.7492
7 0.7531 0.7634 0.7767 0.7946 0.8203 0.8618
8 0.8491 0.8609 0.8762 0.8968 0.9265 0.9745
9 0.9450 0.9584 0.9757 0.9990 1.0327 1.0872

10 1.0410 1.0559 1.0752 1.1013 1.1389 1.1999
11 1.1369 1.1534 1.1747 1.2035 1.2451 1.3126
12 1.1496 1.1676 1.1909 1.2224 1.2679 1.3420
13 1.1403 1.1575 1.1800 1.2105 1.2549 1.3279
14 1.1266 1.1422 1.1625 1.1900 1.2303 1.2969
15 1.1122 1.1259 1.1435 1.1675 1.2024 1.2600
16 1.0977 1.1093 1.1243 1.1444 1.1736 1.2211
17 1.0832 1.0928 1.1050 1.1213 1.1446 1.1817
18 1.0687 1.0762 1.0857 1.0981 1.1155 1.1420
19 1.0541 1.0596 1.0664 1.0750 1.0864 1.1024
20 1.0396 1.0430 1.0471 1.0518 1.0572 1.0627
21 1.0251 1.0265 1.0278 1.0286 1.0281 1.0230
22 1.0105 1.0099 1.0085 1.0055 0.9990 0.9833
23 0.9960 0.9933 0.9892 0.9823 0.9699 0.9436
24 0.9815 0.9767 0.9698 0.9591 0.9408 0.9038
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25 0.9779 0.9723 0.9641 0.9514 0.9296 0.8859
26 0.9786 0.9731 0.9649 0.9521 0.9300 0.8848
27 0.9805 0.9754 0.9679 0.9560 0.9354 0.8926
28 0.9827 0.9781 0.9715 0.9609 0.9425 0.9043
29 0.9849 0.9809 0.9752 0.9661 0.9503 0.9175
30 0.9871 0.9838 0.9789 0.9713 0.9582 0.9312
31 0.9893 0.9866 0.9827 0.9766 0.9662 0.9451
32 0.9915 0.9894 0.9864 0.9818 0.9741 0.9590
33 0.9937 0.9922 0.9901 0.9871 0.9821 0.9730
34 0.9959 0.9950 0.9939 0.9923 0.9901 0.9870
35 0.9981 0.9978 0.9976 0.9976 0.9981 1.0010

Return autocorrelations at lag
1 0.9337 0.9352 0.9370 0.9393 0.9423 0.9466
2 0.8410 0.8419 0.8430 0.8445 0.8467 0.8504
3 0.7437 0.7430 0.7422 0.7413 0.7401 0.7388
4 0.6456 0.6432 0.6401 0.6360 0.6304 0.6220
5 0.5474 0.5431 0.5376 0.5302 0.5198 0.5036
6 0.4492 0.4430 0.4351 0.4244 0.4091 0.3846
7 0.3510 0.3429 0.3326 0.3186 0.2983 0.2654
8 0.2527 0.2429 0.2301 0.2127 0.1875 0.1464
9 0.1545 0.1428 0.1276 0.1070 0.0769 0.0276

10 0.0565 0.0430 0.0255 0.0017 ~0.0330! ~0.0898!
11 ~0.0403! ~0.0554! ~0.0749! ~0.1013! ~0.1398! ~0.2027!
12 ~0.1281! ~0.1439! ~0.1644! ~0.1923! ~0.2329! ~0.2994!
13 ~0.1484! ~0.1662! ~0.1892! ~0.2203! ~0.2653! ~0.3385!
14 ~0.1424! ~0.1600! ~0.1830! ~0.2143! ~0.2599! ~0.3348!
15 ~0.1294! ~0.1456! ~0.1667! ~0.1956! ~0.2381! ~0.3088!
16 ~0.1149! ~0.1291! 90.1477! ~0.1731! ~0.2105! ~0.2729!
17 ~0.1000! ~0.1122! ~0.1280! ~0.1495! ~0.1809! ~0.2332!
18 ~0.0852! ~0.0952! ~0.1082! ~0.1256! ~0.1508! ~0.1919!
19 ~0.0703! ~0.0782! ~0.0883! ~0.1016! ~0.1205! ~0.1502!
20 ~0.0554! ~0.0612! ~0.0684! ~0.0776! ~0.0901! ~0.1083!
21 ~0.0405! ~0.0442! ~0.0485! ~0.0537! ~0.0597! ~0.0663!
22 ~0.0257! ~0.0272! ~0.0286! ~0.0297! ~0.0294! ~0.0245!
23 ~0.0108! ~0.0102! ~0.0088! ~0.0058! 0.0008 0.0170
24 0.0039 0.0066 0.0107 0.0177 0.0302 0.0573
25 0.0174 0.0219 0.0285 0.0388 0.0566 0.0929
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Table AIII

Comparative Statics with Respect to Information Diffusion Parameter
Information diffusion parameter z takes on values 3, 6, 9, 12, 15, and 18. f is the intensity of momentum trade described in equation ~7!. Pt is
the stock price at time t. Pt

* is the rational expectations stock price. The other parameter values are set as follows: The momentum traders’
horizon j 5 12, the volatility of news shocks s 5 0.5, and the momentum traders’ risk tolerance g 5 103.

Information Diffusion Parameter z 5 3 z 5 6 z 5 9 z 5 12 z 5 15 z 5 18

f 0.0322 0.1293 0.2023 0.2605 0.3214 0.3785
Standard deviation of ~Pt 2 Pt21! 0.2952 0.2317 0.2106 0.2028 0.1977 0.1907
Standard deviation of ~Pt 2 Pt

* ! at f 5 0 0.3727 0.6180 0.7935 0.9373 1.0620 1.1736
Standard deviation of ~Pt 2 Pt

* ! 0.3744 0.6317 0.8087 0.9365 1.0331 1.0992

Cumulative impulse response at lag
0 0.3333 0.1667 0.1111 0.0833 0.0667 0.0556
1 0.6774 0.3549 0.2447 0.1884 0.1548 0.1321
2 1.0218 0.5459 0.3828 0.2991 0.2497 0.2167
3 1.0329 0.7373 0.5219 0.4113 0.3469 0.3042
4 1.0333 0.9287 0.6611 0.5238 0.4448 0.3929
5 1.0333 1.1201 0.8004 0.6365 0.5430 0.4821
6 1.0333 1.1449 0.9397 0.7492 0.6412 0.5713
7 1.0333 1.1481 1.0790 0.8618 0.7394 0.6607
8 1.0333 1.1485 1.2183 0.9745 0.8376 0.7501
9 1.0333 1.1486 1.2465 1.0872 0.9359 0.8395

10 1.0333 1.1486 1.2522 1.1999 1.0341 0.9288
11 1.0333 1.1486 1.2533 1.3126 1.1323 1.0182
12 1.0333 1.1486 1.2536 1.3420 1.2306 1.1076
13 1.0226 1.1270 1.2311 1.3279 1.3074 1.1760
14 1.0111 1.0999 1.1996 1.2969 1.3704 1.2284
15 0.9997 1.0717 1.1652 1.2600 1.3602 1.2718
16 0.9989 1.0433 1.1302 1.2211 1.3256 1.3107
17 0.9989 1.0148 1.0949 1.1817 1.2831 1.3474
18 0.9989 0.9864 1.0596 1.1420 1.2378 1.3275
19 0.9989 0.9795 1.0242 1.1024 1.1918 1.2862
20 0.9989 0.9782 0.9889 1.0627 1.1454 1.2368
21 0.9989 0.9780 0.9536 1.0230 1.0989 1.1842
22 0.9989 0.9779 0.9407 0.9833 1.0524 1.1305
23 0.9989 0.9779 0.9370 0.9436 1.0059 1.0763
24 0.9989 0.9779 0.9360 0.9038 0.9594 1.0220
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25 0.9989 0.9779 0.9358 0.8859 0.9128 0.9676
26 0.9992 0.9807 0.9402 0.8848 0.8732 0.9211
27 0.9996 0.9846 0.9475 0.8926 0.8402 0.8837
28 1.0000 0.9887 0.9560 0.9043 0.8329 0.8531
29 1.0000 0.9929 0.9648 0.9175 0.8417 0.8268
30 1.0000 0.9972 0.9737 0.9312 0.8581 0.8030
31 1.0000 1.0014 0.9826 0.9451 0.8780 0.8015
32 1.0000 1.0028 0.9916 0.9590 0.8992 0.8165
33 1.0000 1.0032 1.0005 0.9730 0.9209 0.8409
34 1.0000 1.0033 1.0095 0.9870 0.9428 0.8701
35 1.0000 1.0033 1.0139 1.0010 0.9648 0.9014

Return autocorrelations at lag
1 0.6806 0.8661 0.9239 0.9466 0.9585 0.9666
2 0.3410 0.6970 0.8155 0.8504 0.8794 0.9010
3 0.0110 0.5233 0.6995 0.7388 0.7761 0.8178
4 0.0004 0.3493 0.5787 0.6220 0.6640 0.7216
5 0.0000 0.1775 0.4416 0.5036 0.5486 0.6116
6 0.0000 0.0230 0.2981 0.3846 0.4321 0.4861
7 0.0000 0.0000 0.1532 0.2654 0.3152 0.3547
8 ~0.0000! ~0.0230! 0.0112 0.1464 0.1983 0.2234
9 ~0.0000! ~0.0481! ~0.1148! 0.0276 0.0818 0.0979

10 ~0.0004! ~0.0739! ~0.1647! ~0.0898! ~0.0335! ~0.0202!
11 ~0.0110! ~0.0997! ~0.1983! ~0.2027! ~0.1455! ~0.1304!
12 ~0.0223! ~0.1249! ~0.2270! ~0.2994! ~0.2483! ~0.2311!
13 ~0.0330! ~0.1455! ~0.2482! ~0.3385! ~0.3352! ~0.3159!
14 ~0.0230! ~0.1309! ~0.2371! ~0.3348! ~0.3873! ~0.3692!
15 ~0.0117! ~0.1071! ~0.2130! ~0.3088! ~0.4071! ~0.3980!
16 ~0.0007! ~0.0815! ~0.1846! ~0.2729! ~0.3802! ~0.4097!
17 ~0.0000! ~0.0557! ~!.1544! ~0.2332! ~0.3356! ~0.4070!
18 ~0.0000! ~0.0302! ~0.1206! ~0.1919! ~0.2842! ~0.3855!
19 ~0.0000! ~0.0069! ~0.0847! ~0.1502! ~0.2302! ~0.3299!
20 ~0.0000! ~0.0009! ~0.0481! ~0.1083! ~0.1753! ~0.2591!
21 0.0000 0.0029 ~0.0120! ~0.0663! ~0.1201! ~0.1826!
22 0.0000 0.0066 0.0208 ~0.0245! ~0.0649! ~0.1062!
23 0.0000 0.0104 0.0375 0.0170 ~0.0101! ~0.0326!
24 0.0004 0.0142 0.0477 0.0573 0.0435 0.0370
25 0.0007 0.0180 0.0556 0.0929 0.0938 0.1015
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Table AIV

Comparative Static with Respect to Risk Tolerance with Contrarian Trading
The combined risk tolerance g of momentum traders and contrarians takes on values 100.1, 100.3, and 100.5. w is the equilibrium fraction of
momentum traders in the population. For each level of risk tolerance, the first column corresponds to the all-momentum equilibrium, ~as in
Section II! the second column to the equilibrium in which w is endogenously determined, ~as in Section IIIA.1!, and the third column to the
equilibrium in which every trader can optimally condition on both the momentum and contrarian variables ~as in Section IIIA.2!. fM and fC are
the intensity of momentum and contrarian trades respectively. The other parameter values are set as follows: The information diffusion param-
eter z 5 3, traders’ horizon j 5 1, and the volatility of news shocks s 5 1. The contrarians are assumed to trade based on returns from three
periods ago: c 5 2.

Risk Tolerance g 5 100.1 Risk Tolerance g 5 100.3 Risk Tolerance g 5 100.5

Equilibrium Value of w 1 0.6703 1 0.786 1 0.9079

fM 0.4668 0.3078 0.2954 0.4167 0.3291 0.2904 0.3794 0.3466 0.282
fC 0.0000 ~0.1514! ~0.1716! 0.0000 ~0.0896! ~0.1498! 0.0000 ~0.0351! ~0.1333!

Cumulative Impulse response at lag
0 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333
1 0.8223 0.7693 0.7651 0.8056 0.7764 0.7635 0.7931 0.7822 0.7607
2 1.2282 1.1342 1.1276 1.1968 1.1458 1.1249 1.1744 1.1556 1.1205
3 1.1895 1.0619 1.0499 1.1630 1.0917 1.055 1.1447 1.1177 1.057
4 0.9819 0.9117 0.9029 0.9859 0.9425 0.9153 0.9887 0.9711 0.9251
5 0.9031 0.8985 0.8944 0.9262 0.9178 0.9053 0.9408 0.9361 0.9148
6 0.9632 1.0069 1.0108 0.9751 0.9967 1.0076 0.9818 0.9892 1.0056
7 1.0281 1.0561 1.0596 1.0204 1.0393 1.0506 1.0156 1.0236 1.0432
8 1.0303 1.0171 1.0159 1.0189 1.0162 1.014 1.0128 1.0131 1.012
9 1.0010 0.9716 0.9671 0.9994 0.9853 0.974 0.9990 0.9945 0.9791

10 0.9864 0.9785 0.9772 0.9919 0.9860 0.9819 0.9947 0.9923 0.9857
11 0.9931 1.0080 1.0105 0.9969 1.0023 1.0078 0.9984 0.9996 1.006
12 1.0032 1.0160 1.0182 1.0021 1.0081 1.0135 1.0014 1.0032 1.0101
13 1.0047 1.0014 1.0005 1.0022 1.0019 1.0005 1.0011 1.0013 1.0003
14 1.0007 0.9911 0.9891 1.0000 0.9965 0.9924 0.9999 0.9991 0.9945
15 0.9981 0.9956 0.9953 0.9991 0.9977 0.9968 0.9995 0.9991 0.9978
16 0.9988 1.0036 1.0049 0.9996 1.0010 1.0032 0.9999 1.0001 1.0022
17 1.0003 1.0040 1.0048 1.0002 1.0016 1.0031 1.0001 1.0004 1.002
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18 1.0007 0.9994 0.9989 1.0002 1.0001 0.9993 1.0001 1.0001 0.9995
19 1.0002 0.9974 0.9966 1.0000 0.9992 0.9979 1.0000 0.9999 0.9987
20 0.9998 0.9993 0.9993 0.9999 0.9997 0.9996 1.0000 0.9999 0.9998
21 0.9998 1.0013 1.0018 1.0000 1.0003 1.0011 1.0000 1.0000 1.0006
22 1.0000 1.0009 1.0011 1.0000 1.0003 1.0006 1.0000 1.0001 1.0003
23 1.0001 0.9996 0.9993 1.0000 1.0000 0.9996 1.0000 1.0000 0.9998

Return autocorrelations at lag
1 0.6433 0.6123 0.6053 0.6530 0.6346 0.6161 0.6595 0.6524 0.6245
2 0.0268 0.0221 0.0140 0.0657 0.0600 0.0398 0.0937 0.0910 0.0623
3 ~0.2878! ~0.2404! ~0.2424! ~0.2447! ~0.2218! ~0.2248! ~0.2147! ~0.2068! ~0.2086!
4 ~0.1468! ~0.0221! ~0.0080! ~0.1294! ~0.0600! ~0.0194! ~0.1170! ~0.0910! ~0.0263!
5 0.0658 0.1565 0.1707 0.0481 0.1047 0.1460 0.0371 0.0599 0.1264
6 0.0992 0.0947 0.0968 0.0740 0.0794 0.0877 0.0584 0.0627 0.0792
7 0.0156 ~0.0521! ~0.0621! 0.0108 ~0.0228! ~0.0477! 0.0081 ~0.0031! ~0.0376!
8 ~0.0390! ~0.0722! ~0.0776! ~0.0263! ~0.0484! ~0.0641! ~0.0191! ~0.0281! ~0.0533!
9 ~0.0255! 0.0032 0.0081 ~0.0155! ~0.0062! 0.0040 ~0.0103! ~0.0088! 0.0019

10 0.0063 0.0454 0.0526 0.0045 0.0231 0.0400 0.0033 0.0090 0.0311
11 0.0149 0.0161 0.0158 0.0083 0.0119 0.0129 0.0052 0.0070 0.0103
12 0.0040 ~0.0204! ~0.0256! 0.0016 ~0.0075! ~0.0181! 0.0007 ~0.0014! ~0.0132!
13 ~0.0051! ~0.0176! ~0.0199! ~0.0028! ~0.0090! ~0.0144! ~0.0017! ~0.0035! ~0.0105!
14 ~0.0042! 0.0053 0.0080 ~0.0018! 0.0005 0.0051 ~0.0009! ~0.0007! 0.0035
15 0.0004 0.0126 0.0153 0.0004 0.0049 0.0103 0.0003 0.0013 0.0071
16 0.0022 0.0018 0.0012 0.0009 0.0016 0.0010 0.0005 0.0008 0.0007
17 0.0008 ~0.0068! ~0.0090! 0.0002 ~0.0019! ~0.0056! 0.0001 ~0.0003! ~0.0037!
18 ~0.0006! ~0.0038! ~0.0043! ~0.0003! ~0.0015! ~0.0027! ~0.0002! ~0.0004! ~0.0017!
19 ~0.0007! 0.0026 0.0038 ~0.0002! 0.0004 0.0023 ~0.0001! 0.0000 0.0014
20 0.0000 0.0032 0.0041 0.0000 0.0010 0.0024 0.0000 0.0002 0.0015
21 0.0003 ~0.0003! ~0.0007! 0.0001 0.0001 ~0.0004! 0.0000 0.0001 ~0.0003!
22 0.0002 ~0.0020! ~0.0028! 0.0000 ~0.0004! ~0.0016! 0.0000 0.0000 ~0.0009!
23 ~0.0001! ~0.0007! ~0.0007! 0.0000 ~0.0002! ~0.0004! 0.0000 ~0.0001! ~0.0002!
24 ~0.0001! 0.0010 0.0015 0.0000 0.0001 0.0008 0.0000 0.0000 0.0004
25 0.0000 0.0008 0.0010 0.0000 0.0002 0.0005 0.0000 0.0000 0.0003
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~A16!

Assuming that a covariance stationary equilibrium exists, the holding of the
smart money is

zt
S 5

gSE @Pt11 2 Pt 6Dt ,et11,{{{ ,et1z21,DPt21,DPt22,{{{ ,DP2`#

Var @Pt11 2 Pt 6Dt ,et11,{{{ ,et1z21,DPt21,DPt22,{{{ ,DP2`#
, ~A17!

and the holding of the momentum investors is given by equation ~A7!. At the
conjectured equilibrium price in equation ~A16!, we have

zt
S 5 (

i5t11

t1z21

bi ei 1 (
i51

`

ki DPt2i ~A18!

for the smart money and equation ~A8! for the momentum investors.
In general, the bs, ks, and fs in equation ~A16! have to be determined

numerically as fixed points of equations ~A8! and ~A18! using the same meth-
odology described above. Though solving for these parameters is computa-
tionally diff icult, we can characterize certain behavior in a covariance
stationary equilibrium. Given a positive one-unit shock that begins to dif-
fuse among newswatchers at time t, the price underreacts at t for finite
smart money risk tolerance; that is,

DPt 5
1
z

1 bz21 , 1.

The price eventually converges to one in a covariance stationary equilib-
rium. And in a covariance stationary equilibrium, the price must also over-
shoot one. To see this, suppose it does not. Then the serial correlation in
returns would be positive at all horizons. Then this implies that momentum
investors would have f . 0, which by our previous logic implies that there
would be overreaction, thereby establishing a contradiction.

When the risk tolerance of smart money is infinite, it follows from the
discussion above that without momentum traders prices follow a random
walk. So, the expected return to momentum trading is zero. Hence, when the
risk tolerance of smart money is infinite, prices following a random walk
and no momentum trading is in fact a covariance stationary equilibrium.
Q.E.D.

Appendix B. Numerical Comparative Statics

See Tables AI through AIV.
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